

Water Management in Gas Analysis

Laura Geenen

Director of Business Dev.

Environmental/Scientific Div.

+1-848-224-3790

LGeenen@PermaPure.com

www.PermaPure.com

Challenges for CEMS Sample Conditioning

- Difficult to sample a hot, wet, dirty and corrosive gas reliably & consistently
- High reliability required systems must run for a long time without supervision
 - Must tolerate adverse and faulty operating conditions
 - ✓ Hot and Humid ambient conditions (up to 50 C) if installed outside
 - Systems require maintenance and sometimes costly repair to maintain compliance

Sample Pathway

Sample Conditioning Prevents Unexpected Liquid Water!

Why do we care so much?

Costs of Unexpected Water

Confidential. May not be reproduced or distributed without permission from Perma Pure.

How Wet is Wet?

Relative Humidity (RH)

- The amount of moisture in the air as a percentage of the maximum amount that air can hold depending on the temperature of the air.
- RH changes as temperature changes
- <u>Amount of actual moisture in air is not</u> <u>necessarily changed by temperature</u>

Partial Pressure of Water Vapor

$(\mathsf{P}_{\mathsf{W}})$

• The part of the total pressure that is exerted by the water vapor alone.

Dew Point

- The temperature at which RH reaches 100% and condensation forms
- Scale used by those people concerned about water condensation.

Percent Moisture by Volume

 # of molecules of H2O per unit volume / total # of molecules per unit volume

• P_W/P_T

Dew Point & Ambient Air Temperature

Dew Point = 10°C

Confidential. May not be reproduced or distributed without permission from Perma Pure.

How Dry is Dry?

Dryness targets are based on application requirements.

- Preventing condensation / damage to the sensor
 - Target dew point: + 8-10 C
- Removing moisture for most CEMS & particulate monitoring
 - Target dew point: +4 C
- Eliminating water interference for NIR and improved CEMS performance
 - Target dew point: -10 to -15 C
- Ultimate drying for IMS and other methods
 - Target dew point -40 to -60 C

Changing Conditions Along CEMS Pathway

Conditioning: Thermo Electric Cooler condenses water and drains it from system

Areas of Concern Along CEMS Pathway

Changing Conditions Along Process Pathway

- Sample moisture volume may be dynamic
- Drying solution may remove only liquid water from line
- Dew point reduction may not reach below ambient
- Water vapor removal may not be low enough based on changing temperatures along pathway
- Not all processes are linear, drying may need to be added at multiple points
- Potential solutions:
 - Increase gas temperature
 - Remove more water in vapor form

Moisture Management Solutions

Thermoeletric Cooler

Water Trap

Pros

- Provide a consistent moisture content within specifications(+4 C dew point)
- In CEMS applications, this is the industry standard for gas sample conditioning.

Cons

- Moisture content levels limited to +4 °C dew point
- Unexpected moisture increases can lead to moisture breakthrough
- In presence of acidic gases (e.g. SOx, NOx, and HCL) , water carryover leads to acid formation
- Highly water-soluble components in sample may be lost

Pros

- Cost effective
- No moving parts and no power required

Cons

- Only removes liquid water
- Water-soluble analytes may be lost
- Manually drained water may increase maintenance

Desiccant Dryer

Gas Dilution

Pros

- Cost effective
- Achieves sub-ambient moisture levels
- No moving parts and no power required

Cons

- Desiccants non-selectively remove water and other analytes from the gas stream
- Requires regular replacement
- Performance of desiccant degrades over time leading to inconsistent output

Pros

- Low maintenance
- Can achieve very low, sub-ambient, moisture levels
- No moving parts

Cons

- Analytes becomes diluted in the gas sample, requiring increased analyzer sensitivity.
- Critical stability of the dilution ratio can difficult to maintain due to variations in pressure and temperature
- Requires access to a dry gas, such as instrument quality air

Nafion[™] Technology

- Copolymer of a Teflon[™] backbone with periodic fluorocarbon sidechains which terminate in a sulfonic acid
- Sulfonic acid groups participate in chemical reactions, therefore Nafion[™] polymer:
 - Functions as an acid catalyst
 - Functions as an ion exchange resin with exposed to solutions
 - <u>Readily absorbs water in vapor or</u> <u>liquid phase</u>

Nafion[™] Selectivity

- Nafion permeation selectivity is based on chemical reactivity, not the size of the molecule – not traditional permeation
- Only compounds that chemically associate with sulfonic acid permeate through Nafion
- Bases associate with sulfonic acid and permeate through Nafion
- Few bases are gases at typical operating temperatures, so very few compounds permeate

Retained by Nafion

Atmospheric Gases Halogens Hydrocarbons Inorganic Acids Other Organics Oxides Sulfur Toxic Gases Ar He H₂ N₂ O₂ O₃ Br₂ Cl₂ F₂ I₂ Simple forms (alkanes) HCl HF HNO₃ H₂SO₄ Aromatics Esters Ethers CO CO₂ SO_X NO_X COS H₂S Mercaptans COCl₂ HCN NOCI

Perma Pure Dryers

- Reach dew points of -40°C
- Flow rates up to 40 lpm
- Temperatures up to 100°C
- Tube in shell design: inner Nafion[™] element with outer polymer or SS shell.
- Removes water vapor based on partial pressure of water vapor differential
- The sample gas flows through the tube, and the dry purge gas flows outside of the tube in the opposite direction
- The flows are sealed off from each other
- Available in a wide range of dryer lengths and tubing diameters

Perma Pure Dryers

Pro

- Achieves sub-ambient humidity levels (as low as -40 °C dew point) depending on configuration
- Keeps analytes, including those that are water-soluble, in the gas sample
- Provides a consistent humidity level of the output gas
- No moving parts to wear out and no power required

Con

- Requires access to a dry purge gas, such as instrument quality air, compressed air or use of another purge gas configuration
- Damaged by Ammonia

Water Vapor Saturation Temperatures

°F	°C	% Water	
212	100	100	
158	70	30.7	Wet Scrubber
149	65	25.2	
141	61	20.0	
131	55	15.5	
114	46	10.0	Natural Gas Combustion
95	35	5.55	
68	20	3.31	
50	10	1.21	
41	4	0.80	TE Cooler output
32	0	0.61	
12	-10	0.26	
0	-18	0.12	Nafion Dryers remove 80% of Water Vapor left by Cooler
			Perma Pure maxtec

Emissions Monitoring

Considerations In Moisture Removal

- Is the actual dew point of the gas known at all points in process?
- Can the environment along the pathway be controlled?
- Does any part of the process affect the moisture content of the gas?
 - Unexpected increase in moisture content from source
 - Addition of other gases including ambient air
- Do current drying solutions remove enough water
 - Liquid
 - Vapor

New Products

Confidential. May not be reproduced or distributed without permission from Perma Pure.

Hybrid Sample Gas Cooler

Feature	Benefits
Passive system requires no electric current	Ideal for sites that have limited/no access to power or other areas where a non- electric product may be desirable
	Eliminates the cost associated with installation and permits
Simple mechanical design	Lower Maintenance Cost
(No Moving Parts)	Increased Reliability
Ability to be stack mounted	Eliminates the cost of heated lines Saves room in crowded CEMS shed
Utilizes Nafion technology	Better performance, ability to reach lower dew point than traditional coolers

Hybrid Sample Gas Cooler

OUR ENVIRONMENTAL BUSINESS IS HEATING UP!

Confidential. May not be reproduced or distributed without permission from Perma Pure.

Heated Lines

Where are they used?

Transport the sample gas from the sample source to the gas conditioning system or analyzer

- Moisture can distort the analytical measurement and damage the equipment
- Ensure the temperature of the sample gas stays above the dew point to prevent condensation from occurring in the samples

Anatomy

Anatomy of Different Heated Lines

Electrical Resistance Heat Tape

Thermal Energy is transferred to the tube through both conductive and radiant modes of heat. Radiant energy emitted away from the tube is reflected back on to the tube.

Constant Power Density (CPD)

- Bus Wires Heating wires Insulation
 - Alternating bus contacts at fixed intervals
 - Produces constant foot to foot power output

Self-Regulating (SR)

Insulation Conductive Core Self-Regulating Heating ----

Matrix

- Bus contacts surrounded by a conductive self-regulating heating matrix
- Adjusts output heat in respect to increase and decreases in sample temperature

Anatomy of Consistent Heating

Electrical Resistance Heat Tape

- Heat Tape is precisely wound around the sample tube to provide consistent sample temperature along the entire circum ference and length of the line
- Flexible even when energized
- Frequent movement does not damage the heating element
- Ideal for rugged applications

Clayborn Electrical Resistive Heat Tape

Heating Element

- Electrical resistance heating tape
 - Highly efficient architecture
 - Rapid heat-up time
 - Precise wrapping for consistent heating
 - Customizable to achieve specific temperature / length / input voltage combinations
 - AC or DC operation
 - 12v, 24v, 12ov, 208v, 24o, 277v, and 48ov input
 - 3-phase operation

Customizable Designs

Sample Line Materials:

- Teflon
 - Various Grades
 - Smooth bore of convoluted
- Stainless Steel
 - Welded or Seamless
 - Electropolished
 - Large ID convoluted
- Polyethylene
- Nylon

Insulation Materials::

- Standard Nomex
- High performance Aerogel
- Closed/Open cell foam

Up to 6 Heated Sample Lines Up to 6 Unheated Sample Lines 24 pass through wires

Customizable Design

Cover Options

- Tuffguard
- Nylon Braid
- Silicone
- Heat Shrink

Innovative Design

- Integrated strain relief loops at customizable locations
- Finished ends standard from factory •
- Armored Ends •
- **Embedded Thermostats**
- Thermocouples ۲
- On/OFF indicator lights •
- "Run Wild" Temperature of sample line will • fluctuate with ambient
- Color Coding
- Labeling

Sample / Calibration 'Tee' fitting (far left) Early calibration line breakout (middle) Strain relief (far right)

Kick / Hold Circuit

Perma Pure

For More Information:

www.PermaPure.com

Laura Geenen LGeenen@PermaPure.com 848-224-3790 www.ClaybornLab.com

Tim Edge Tim@ClaybornLab.com 239-826-1170

Thank you

