USER'S GROUP MEETING

September 11, 2018 NO_X CONVERTER EFFICIENCY TESTING

> LEN RICHTER WELCOME

> > CiSCO

QUESTIONS

1. DOES EVERYONE HERE KNOW WHAT NOX CONVERTER EFFICIENCY TESTING IS?

QUESTIONS

2. IS ANYONE HERE **REQUIRED NOW BY THEIR REGULATORY AGENCY OR** ARE ANTICIPATING THAT THEY WILL BE REQUIRED TO CONDUCT THIS TEST ON A ROUTINE BASIS?

WHAT / WHY / HOW >WHAT? >BACKGROUND ON NO_X CONVERTER

WHY? REASON FOR TESTING

➢HOW?
➢METHODS

►WHAT IS NO_x? ≻NO_x IS <u>NOT</u> A MOLECULE >NO_x IS A MAN MADE NAME FOR THE SUM OF THE NITRIC OXIDE (NO) MOLECULE AND THE NITROGEN DIOXIDE (NO₂) MOLECULE – $NO_x = NO + NO_2$ ► DOES NOT INCLUDE THE N₂O MOLECULE (NITROUS OXIDE)

➢ FORMATION OF NO_X IS <u>NOT</u> FUEL DEPENDENT LIKE SO₂
➢ MOST IS CREATED FROM THE HEAT OF COMBUSTION $ℕ_2 + O_2 + HEAT = 2NO$

THEREFORE IT IS PRESENT ON <u>ALL</u> COMBUSTION SOURCES

>IF PRIMARILY NO IS FORMED FROM THE HEAT OF COMBUSTION - WHY BE CONCERNED WITH NO₂? >NO IS NOT A STABLE MOLECULE ➢ GIVEN ENOUGH TIME AND OXYGEN, ALL NO WILL CONVERT TO NO₂

➢ NO_X IS TYPICALLY LIMITED IN PERMIT BY REGULATORY AGENCIES AS IT IS A CONTRIBUTOR TO PHOTOCHEMICAL SMOG AND ACID RIAN

SOME PERMITS STATE THAT NO_x IS TO BE REPORTED AS "NO₂" WHAT IS MEANT IS THAT THE MOLECULAR WEIGHT OF NO₂ IS TO BE USED IN THE MASS CALCULATION

FIF NOX IS NOT A MOLECULE, AND NO_x ANALYZERS ARE "MOLECULE COUNTERS", HOW IS NO_x MEASURED? SHORT ANSWER - IT IS NOT MEASURED. > ONLY THE NO MOLECULE IS $\begin{array}{l} \mathsf{MEASURED} - \mathsf{THAT}\ \mathsf{IS},\ \mathsf{A}\ \mathsf{NO}_{\mathsf{X}}\\ \mathsf{ANALYZER}\ \mathsf{IS}\ \mathsf{REALLY}\ \mathsf{A}\ \mathsf{NO} \end{array}$ ANALYZER

► IN THE US, MOST ACCEPTABLE **TECHNOLOGY FOR NOX** ANALYSIS, IS THE CHEMILUMINESCENT ANALYZER (CLA, CLD) >CHEMICAL LIGHT $>O_3 + NO = O_2 + NO_2^*$ >ANALYZER + SAMPLE CONDITIONING

► THE NO₂ MOLECULE IS CONVERTED TO NO IN THE SAMPLE CONDITIONING PRIOR TO DETECTION AND THE ANALYZER'S RESULT IS REPORTED AS NO_{x} (NO+NO₂) ► A NO_x CONVERTER IS REALLY A NO₂ TO NO CONVERTER

42i/LS

WHY

>TWO TYPES OF CONVERTERS 1. STAINLESS STEEL > HIGH TEMPERATURE $\approx 650 \, ^{\circ}\text{C} +$ >INDEFINITE LIFE BUT CAN BECOME CONTAMINATED ► PREFERRED FOR HIGH NO₂ CONCENTRATIONS ► WILL CONVERT NH₃ SLIP TO NO

WHY

2. RARE EARTH CATALYST > MOLYBDENUM \approx 300 °C > VITREOUS CARBON $\approx 200 \, ^{\circ}$ C ► WILL NOT CONVERT NH₃ TO NO >HAVE LIMITED LIFE \succ LIFE = CONCENTRATION X TIME >RATED @ 100,000 ppm/hr > 1 PPM FOR 100,000 HOURS > OR 10 PPM FOR 10,000 HOURS

►NORMALLY NO_x WAS 95% NO AND 5% NO₂ >HOWEVER WITH AMMONIA AND/OR UREA INJECTED SCR - THIS RELATIONSHIP CAN BE CHANGED ► HAVE SEEN NO_x WITH 20% NO2 DOWNSTREAM OF SCR

THEREFORE EFFICIENCY OF NO₂ TO NO (NOX) CONVERTER BECOMES IMPORTANT

EFFICIENCY ABOVE 90% IS REQUIRED

WHY

>NJDEP TECHNICAL MANUAL #1005 - QUARTERLYSCAOMD – ANNUALLY SDAOMD – ANNUALLY PIO PICO – QUARTERLY VIA LETTER – CONTESTED SJVAQMD – ANNUALLY >MOST ANALYZER MANUFACTURES - ANNUALLY

NJDEP Technical Manual #1005

➢ For each chemiluminescence based NOx analyzer, a converter efficiency check must be conducted as the last step of each quarterly audit required by Section VI of this document as well as 40 CFR Part 60 and/or Part 75.

HOW

40CFR60 APPENDIX A, METHOD 7E—DETERMINATION OF NITROGEN OXIDES EMISSIONS FROM STATIONARY SOURCES (INSTRUMENTAL ANALYZER PROCEDURE)

>THREE PROCEDURES

 \geq 8.2.4.1 Introduce NO₂ converter efficiency gas to the analyzer in direct calibration mode and record the NO_x concentration displayed by the analyzer. Calculate the converter efficiency using Equation 7E-7 in section 12.7. The specification for converter efficiency in section 13.5 must be met. The user is cautioned that state-of-the-art NO₂ calibration gases may have limited shelf lives, and this could affect the ability to pass the 90-percent conversion efficiency requirement.

TYPICAL LIFE OF NO₂ CYLINDER IS SIX MONTHS

NEW CYLINDER FOR EVERY ANNUAL TEST

> 7.1.4 Converter Efficiency Gas. What reagents do I need for the converter efficiency test? The converter efficiency gas is a manufacturer-certified gas with a concentration sufficient to show NO₂ conversion at the concentrations encountered in the source. A test gas concentration in the 40 to 60 ppm range is suggested, but other concentrations may be more appropriate to specific sources. For the test described in section 8.2.4.1, NO_2 is required. For the alternative converter efficiency tests in section 16.2, NO is required.

THE "SUGGESTED" USE OF 40 TO 60 ppm NO₂ GAS PER 7.1.4 IS <u>INAPPROPRIATE</u> FOR LOW RANGE NO_X ANALYZERS

ON 10 ppm FSR ANALYZER USE NO₂ GAS LESS THAN 9 ppm

40CFR60 Apx A Method 7e

➤ 8.2.4.2 Alternatively, either of the procedures for determining conversion efficiency using NO in section 16.2 may be used.

40CFR60 Apx A Method 7e

- 16.2 Alternative NO₂ to NO Conversion Efficiency Procedures.
- You may use either of the following procedures to determine converter efficiency in place of the procedure in section 8.2.4.1.

➤ 16.2.1 The procedure for determining conversion efficiency using NO in 40 CFR 86.123-78.

TEDLAR BAG

➤ 16.2.2 Bag Procedure. Fill a Tedlar or equivalent bag approximately half full with either ambient air, pure oxygen, or an oxygen standard gas with at least 19.5 percent by volume oxygen content. Fill the remainder of the bag with mid- to high-level NO in N₂ (or other appropriate concentration) calibration gas.

TEDLAR BAG

(1) Immediately attach the bag to the inlet of the NO_x analyzer (or external converter if used). concentration for a period of **30 minutes**. If the NO_X concentration drops more than 2 percent absolute from the peak value observed, then the NO_2 converter has failed to meet the criteria of this test.

40CFR86.123-78 ► 40CFR86-SUBPART B TEST PROCEDURES - §86.123-78-OXIDES OF NITROGEN ANALYZER CALIBRATION ≻40CFR86 - CONTROL OF EMISSIONS FROM NEW AND **IN-USE HIGHWAY VEHICLES** AND ENGINES MONTHLY TEST ON ALL NO_x ANALYZERS

40CFR86.123-78
> SIMPLIFIED TO FOUR STEP
PROCEDURE
> ASSUMES NO NO₂ IN SPAN CYL

USES CURRENT NO_X SPAN CYLINDER OF NO + IA

►REQUIRES A "CE TESTER"

CE TESTER

40CFR86.123-78

STEP 1 NO MODE ON ANALYZER \succ (NO₂ TO NO CONVERTER BYPASSED) > SPAN ANALYZER ON DAILY SPAN GAS BASELINE VALUE

CE TESTER – STEP 1

STEP 1

Step 1	-		
CalCas NO			
Reading on			
Analyzer			
Cal Can Pattle	1		
couracy check			
aseline value.			
NO Mode on Analyze	NO Convert	ler l	
	····· Z		

40CFR86.123-78

STEP 2

 ADD SMALL AMOUNT OF INSTRUMENT AIR TO SPAN GAS
 DILUTE ANALYZER RESPONSE TO APPROX. 90% OF BASELINE VALUE.

CE TESTER – STEP 2

STEP 2

Step 1	Step 2	
CalGas NO Reading on Analyzer	O2 Dilution Add	
Cal Gas Bottle accuracy check, baseline value.	Dilution of NO with 02 Intrument Alr.	
	New Reading Diluted Value	
NO Mode on Analyze	r/ Bypass N20> NO Co NO ₂	onverter

40CFR86.123-78

►STEP 3 **>TURN ON OZONATOR** > ADJUST OZONE GENERATOR IN CE TESTER SO THAT ANALYZER **RESPONSE IS APPROX. 20% OF BASELINE VALUE** $>NO + O_3 = NO_2 + O_2$ >ANALYZER IN NO MODE - WILL NOT MEASURE NO₂

CE TESTER – STEP 3

STEP 3

Step 1	Step 2	Step 3	
CalGas NO Reading on Analyzer	O2 Dilution Add		
Cal Gas Bottle accuracy check, baseline value.	Dilution of NO with 02 Intrument Alr.		
	New Reading Diluted Value		
		Ozone Generator switched to ON. Reading Low .	
NO Mode on Analyzer/ Bypass N20> NO Converter NO ₂			

40CFR86.123-78

STEP_4 $> NO_{X}$ MODE ON ANALYZER SAMPLE IS PASSED THROUGH NO₂ TO NO CONVERTER >ANALYZER VALUE SHOULD **INCREASE TO BE CLOSE TO** STEP 2 VALUE >IF IT WERE EQUAL YOU WOULD HAVE 100% EFFICIENCY

STEP 4

Step 1	Step 2	Step 3	Step 4	
CalGas NO Reading on Analyzer	O2 Dilution Add			
Cal Gas Bottle accuracy check, baseline value.	Dilution of NO with 02 Intrument Air.		NOx Reading on Analyzer Under Test in NOx Mode.	
	New Reading Diluted Value		The HOx value and the reading in Step 2 should almost agree for 190% efficiency.	
		Ozone Generator switched to ON. Reading Low .		
NO Mode on Analyz	er/ Bypass N20> NO Co NO ₂	nverter	NOx Mode on Analyzer w	ith Converter in-line.

40CFR86.123-78

>EFFICIENCY CALCULATION

<u>STEP 4 VALUE – STEP 3 VALUE</u> STEP 2 VALUE – STEP 3 VALUE X 100

% EFFICIENCY

Step 1	Step 2	Step 3	Step 4	Converter Efficiency Calc.
CalGas NO Reading on Analyzer Cal Gas Bottle accuracy check, baseline value.	O2 Dilution Add Dilution of NO with 02 Intrument Air.		NOx Reading on Aņalyzer Under Test in NOx Mode.	Calculate Converter Efficiency.
	New Reading Diluted Value		The NOx value and the reading in Step 2 should almost agree for 100% efficiency.	
				Step 2 Value Step 3 Value Step 2 Value Step 3 Value
				X
		Ozone Generator switched to ON. Reading Low .	-	= % Efficiency
NO Mode on Analyzer/ Bypass N20> NO Converter			NOx Mode on Analyzer with Converter In-line.	

CE TESTER

STAND ALONE MANUAL OPERATION **FULLY AUTOMATIC OPERATION** UNDER PLC CONTROL CAN BE BUILT INTO SYSTEM Cedar Report Just Like CGA/LINEARITY

